CNIO researchers develop new databases for understanding the human genome
CNIO creates 2 new databases, APPRIS and ChiTaRS, that hold thousands of genomic variants for studying human illnesses
Scientists from the Structural Computational Biology Group at the Spanish National Cancer Research Centre (CNIO), led by Alfonso Valencia, together with French and American researchers, have published recently two articles in the journal Nucleic Acid Research (NAR) that introduce two new databases for studying the human genome.
Living eukaryote beings are capable of generating several proteins from the information contained in a single gene. This special characteristic exists partly thanks to the alternative splicing process that selectively joins some exons (the regions of genes that produce proteins) and not others, in order to produce the proteins needed in each moment.
The articles published by Valencia study the transfer of this information, which is contained in the intermediary molecules between the genes and the proteins—the RNAs —, and which will be used to understand the genome, the way it functions and the role of some of its variants in the origin of human illnesses like cancer.
An illustrative example of the relationship between RNAs and illness is the chronic lymphocytic leukemia. Researchers from the Chronic Lymphocytic Leukemia Spanish Consortium (CLL-ICGC), of which Valencia's team forms part, have observed an accumulation of mutations in the genes responsible for the splicing process. These observations suggest that alterations in these mechanisms might be the cause of the disease.