The Constitution of Medical Knowledge... - Advanced Prostate...

Advanced Prostate Cancer

21,056 members26,262 posts

The Constitution of Medical Knowledge (Part 1 of 3)

Tall_Allen profile image
2 Replies

Patients are often confused by seemingly conflicting findings of studies, or equally good doctors recommending different treatment plans. How are we to decide? Medical science is a process created by a “reality-based community” to help decide such questions. Science isn’t just hypothesis-testing with empirical observation, although that is a big part of it. It is also the consensus by a community of experts. In 1660, scientists led by Isaac Newton formed The Royal Society as the first institution designed to collect, encourage, and evaluate scientific knowledge. They published the first scientific journal in 1665 (which is still in publication). Were they ever wrong? Often! For example, for 250 years everyone wrongly believed Newton’s theory that gravity was a fundamental force of nature. And that is the point – knowledge is fallible and not subject to the personal authority of any one person. But over time, the arc of the universe of scientific knowledge bends towards truth.

There have been many improvements to the system of medical science since the Scientific Revolution. The first peer-reviewed journal was published in 1731. But peer-review as we now know it didn’t begin until the 1970s. The first randomized clinical trial occurred in 1747 (citrus for scurvy), but the rules for running double-blinded randomized clinical trials, and progressive Phase 1-3 trials weren’t systematized until Austin Bradford Hill and Harry Gold in the post-WWII era. Statistics entered medicine in the 1970s. Systematic reviews began in the late 1970s. Evidence-based medicine, as we know it today, was taught in medical schools since the 1980s.

Jonathan Rauch in “The Constitution of Knowledge: A Defense of Truth” describes knowledge as a funnel. At the top are all the guesses, the hypotheses, that drive scientific investigation. This would include (in order of increasing reliability) much of what is posted on any patient health forum every day: anecdotal “evidence” from patients; YouTube videos posted by Snuffy Myers, Mark Scholz, etc.; lab studies (mouse or test-tube); observational/epidemiological studies of patients; retrospective case-controlled studies, and systematic reviews/meta-analyses of them; cohort studies (people followed from before disease occurrence; e.g., Health Professionals Follow-Up Study, Mendelian Randomization Study). All of them are just hypothesis-generating. Most hypotheses are, and should be, wrong. Science depends on evaluating lots of hypotheses. There is no shame in guessing wrong; the only problems are when guessing stops and when one confuses a guess for a fact.

Large, well-done, and confirmed randomized clinical trials are at the bottom of the funnel; they are not just hypothesis-generating, they constitute truth in medical science. These categories were universally agreed upon after looking at which kinds of studies are likely to have conflicting results, and which almost never have conflicting results. All scientists believe in these categories; “pseudoscience” occurs when people claim to be doing science but ignore these categories. Here’s a fuller description:

cebm.ox.ac.uk/resources/lev...

ncbi.nlm.nih.gov/pmc/articl...

prostatecancer.news/2021/07...

Some institutions regularly GRADE prostate cancer research (NCCN, AUA, ASTRO, ASCO, SUO, EAU, CUA, PCF, and others). The institutional opinions (and not anyone’s personal opinion) are the standard-of-care. Until disproved, they constitute current medical truth. While even the best research doesn’t predict for the individual, one is foolish to ignore our best estimate.

There is no science without consensus by experts - science is a social construct. One can argue that there are and always have been objective truths, but we can only know what is in some way perceivable by humans. Did the Earth always revolve around the sun? Of course. But it did not enter the realm of science until Copernicus hypothesized it (1543), and Galileo (1609), Tycho Brahe (1573), Johannes Kepler (1609) and Isaac Newton (1687) proved it and showed how. That’s when astronomy became a science. There is no science without hypothesis-testing and empirical observers.

Loss of Respect for Expertise

How do we know what is true? None of us has the time or the inclination to test everything for ourselves. We rely on trusted experts to tell us. Few doubt that the heart pumps blood to our lungs and other tissues, although few have seen our hearts do that. We know that William Harvey discovered that fact in 1628, and it is now universally accepted as true and foundational to all cardiology. Even fewer know how the nerves cause the heart to beat, how arrhythmias are diagnosed, or how plaques can cause heart attacks. We rely on cardiologists to know all that, and within cardiology are sub-specialties (e.g., heart transplant specialists, sports cardiology, etc.). There are dozens of medical specialties, each with several sub-specialties. There are even specialists in cutting across categories, and assuring that the latest innovations become available to patients; this is called “translational medicine.” In this era of specialization, few know much outside of their specialty, and as patients, we must, at some point, rely on the experts for our knowledge about disease, diagnosis, and treatment.

Medical science became probabilistic in the 20th Century. All medical institutions agreed that statistics are the only way to reject hypotheses, judge superiority or inferiority, infer causality, and to analyze and reduce errors. Statistics are difficult to understand and are non-intuitive, even for many doctors. As sophisticated statistical techniques were adopted by the medical institutions and their publications, lay people, who did not have their arcane knowledge, were increasingly left out of the truth community.

The Dunning-Kruger Effect is a cognitive bias on the part of incompetent people overestimating how much they know. In medicine, a little knowledge is a dangerous thing. When I started writing my novel, Thaw’s Hammer, about a killer virus, I thought I knew enough about the subject to write a credible novel. Four years later, I knew how much I didn’t know. I grew to admire the experts who had to understand the biochemistry of the replicative apparatus, the interactions with host cells, and the immune system. Viruses are the most numerous and diverse form of life on Earth. Anyone who thinks they understand them is wrong. The experts differ from lay people in knowing they don’t completely understand them. Still, an expert understands a lot more than any lay person who thinks he knows more. I know enough to reject any advice from a Jenny McCarthy or a Joe Rogan in favor of advice from the CDC.

Written by
Tall_Allen profile image
Tall_Allen
To view profiles and participate in discussions please or .
Read more about...

The ability to reply to this post has been turned off.

2 Replies
TWTJr profile image
TWTJr

Well said, Tall_Allen!

Darryl profile image
DarrylPartner

Replies have been turned off until August

You may also like...

PSMA scan costs part 3

So this is in the USA, for those international patients. So hospital billed $29,610 for the scan...

Fenbendazole Just Might be Working–Part 1

following proves anything, or is much good as evidence. The move from 0.02 to <0.02 is certainly...

gp/internist pc knowledgeable

recommendations for a doctor who is up to speed in seeing pc patients? NYC area, Mt Sinai...

Has anyone knowledge if...

be a small amount. Does anyone have any real knowledge if this product would effect PSA levels, or...

Knowledgeable (Experienced) Opinions Sought

liked to be in the extra treatment group after randomization but I felt I would at least get my...