Collectively, our findings provide direct evidence that TTFD administration induces voluntary locomotor activity via D1-receptor-mediated dopaminergic activity in the mPFC. TTFD also induces voluntary running in a dose-dependent manner, likely due to the same neural mechanism. This is the first study showing the effect of TTFD on the central nervous system. TTFD might help to promote physical activity, thereby improving physical and mental fitness.
These results imply that TTFD enhances not only voluntary locomotor activity but also running exercise distance.
These results directly support the present hypothesis that TTFD contributes to the induction of voluntary locomotor activity via D1-receptor-mediated dopaminergic activity in the mPFC.
that benfotiamine (BFT), another thiamine derivative, decreases stress-induced anxiety behavior and GSK-3β activity in the PFC26. BFT also prevents stress-suppressed adult hippocampal neurogenesis in predator-stressed mice, independent of brain TDP levels27,28, suggesting the potential of thiamine derivatives as a psychopharmacological agents. TTFD has a similar bioavailability to BFT29, indicating the possibility for a role of TTFD in the brain. Therefore, we hypothesized that TTFD has important effects on the brain and contributes to the induction of physical activity via D1-receptor-mediated dopaminergic activity in the mPFC.