New research using human lung samples and three-dimensional bioengineering techniques to replicate the lung environment has revealed the important role of a subset of immune cells in the lung in fighting tuberculosis (TB). The cells, called T Helper 17 cells, or Th17, have been found to be important in animal models of TB, but are rarely detected in the blood of humans and so their importance in human disease has not been clear until now.
The study, a collaboration by researchers at Africa Health Research Institute (AHRI) in South Africa and the University of Southampton, has been published in The Journal of Clinical Investigation.
TB, a bacterial disease that mainly affects the lung, remains one of the leading causes of death in South Africa, and the World Health Organisation estimates that in 2019 1.4 million people died from the disease globally. Despite this, an effective vaccine for adults is yet to be developed, although results from two recent vaccine trials have been cause for renewed optimism. Vaccination works by stimulating the immune system, a highly complex network of cells and molecules that together provide the flexibility needed to deal with the huge array of different microbes assaulting our bodies on a daily basis. One of the challenges in developing new and improved vaccines is figuring out exactly the right type of immune response you need to generate. Most research into this question is done either in animals, or by studying human blood. But a growing body of research suggests we may find better answers to the question of what a protective immune response looks like at the site of disease, in the human lung tissue itself.
southampton.ac.uk/news/2021...
The Journal of Clinical Investigation. Research Paper: