Human iron metabolism
From Wikipedia, the free encyclopedia
Humans use 20 mg of iron each day for the production of new red blood cells, much of which is recycled from old red blood cells.
Human iron metabolism is the set of chemical reactions maintaining human homeostasis of iron. The control of this necessary but potentially toxic substance is an important part of many aspects of human health and disease. Hematologists have been especially interested in the system of iron metabolism because iron is essential for red blood cells, where most of the human body's iron is contained. Understanding this system is also important for understanding diseases of iron overload, like hemochromatosis, and iron deficiency, like iron deficiency anemia.
Bacterial protection[edit]
In response to a systemic bacterial infection, the immune system initiates a process known as iron withholding. If bacteria are to survive, then they must obtain iron from their environment. Disease-causing bacteria do this in many ways, including releasing iron-binding molecules called siderophores and then reabsorbing them to recover iron, or scavenging iron from hemoglobin and transferrin. The harder they have to work to get iron, the greater a metabolic price they must pay. That means that iron-deprived bacteria reproduce more slowly. So our control of iron levels appears to be an important defense against most bacterial infections; there are some exceptions however. TB resides within macrophages which are an iron rich environment and Borrelia burgdorferi utilises manganese in place of iron. People with increased amounts of iron, like people with hemochromatosis, are more susceptible to some bacterial infection.[4]
Although this mechanism is an elegant response to short-term bacterial infection, it can cause problems when inflammation goes on for longer. Since the liver produces hepcidin in response to inflammatory cytokines, hepcidin levels can increase as the result of non-bacterial sources of inflammation, like viral infection, cancer, auto-immune diseases or other chronic diseases. When this occurs, the sequestration of iron appears to be the major cause of the syndrome of anemia of chronic disease, in which not enough iron is available to produce enough hemoglobin-containing red blood cells.[1]