New treatment strategy could cut Parkinso... - Cure Parkinson's

Cure Parkinson's

26,582 members27,897 posts

New treatment strategy could cut Parkinson's disease off at the pass

dmf240 profile image
2 Replies

September 29, 2016

Source:

Johns Hopkins Medicine

Summary:

Researchers report they have identified a protein that enables a toxic natural aggregate to spread from cell to cell in a mammal's brain -- and a way to block that protein's action. Their study in mice and cultured cells suggests that an immunotherapy already in clinical trials as a cancer therapy should also be tested as a way to slow the progress of Parkinson's disease, the researchers say.

A report on the study appears Sept. 30 in the journal Science.

Ted Dawson, M.D., Ph.D., director of the Institute for Cell Engineering at the Johns Hopkins University School of Medicine and one of the study's leaders, says the new findings hinge on how aggregates of α-synuclein protein enter brain cells. Abnormal clumps of α-synuclein protein are often found in autopsies of people with Parkinson's disease and are thought to cause the death of dopamine-producing brain cells.

A few years ago, Dawson says, a researcher at Goethe University in Germany published evidence for a novel theory that Parkinson's disease progresses as α-synuclein aggregates spread from brain cell to brain cell, inducing previously normal α-synuclein protein to aggregate, and gradually move from the "lower" brain structures responsible for movement and basic functions to "higher" areas associated with processes like memory and reasoning. "There was a lot of skepticism, but then other labs showed α-synuclein might spread from cell to cell," Dawson says. Intrigued, his research group began working with those of Valina Dawson, Ph.D., professor of neurology, and Han Seok Ko, Ph.D., assistant professor of neurology, to investigate how the aggregates enter cells.

The researchers knew they were looking for a certain kind of protein called a transmembrane receptor, which is found on the outside of a cell and works like a lock in a door, admitting only proteins with the right "key." They first found a type of cells α-synuclein aggregates could not enter -- a line of human brain cancer cells grown in the laboratory. The next step was to add genes for transmembrane receptors one by one to the cells and see whether any of them allowed the aggregates in. Three of the proteins did, and one, LAG3, had a heavy preference for latching on to α-synuclein aggregates over nonclumped α-synuclein.

The team next bred mice that lacked the gene for LAG3 and injected them with α-synuclein aggregates. "Typical mice develop Parkinson's-like symptoms soon after they're injected, and within six months, half of their dopamine-making neurons die," Dawson says. "But mice without LAG3 were almost completely protected from these effects." Antibodies that blocked LAG3 had similar protective effects in cultured neurons, the researchers found.

"We were excited to find not only how α-synuclein aggregates spread through the brain, but also that their progress could be blocked by existing antibodies," says Xiaobo Mao, Ph.D., a research associate in Dawson's laboratory and first author on the study.

Dawson notes that antibodies targeting LAG3 are already in clinical trials to test whether they can beef up the immune system during chemotherapy. If those trials demonstrate the drugs' safety, the process of testing them as therapeutics for Parkinsons' disease might be sped up, he says.

For now, the research team is planning to continue testing LAG3 antibodies in mice and to further explore LAG3's function.

More than 1 million people in the United States live with Parkinson's disease. The disease gradually strips away motor abilities, leaving people with a slow and awkward gait, rigid limbs, tremors, shuffling and a lack of balance. Its causes are not well-understood.

Story Source:

Johns Hopkins Medicine. "New treatment strategy could cut Parkinson's disease off at the pass." ScienceDaily. ScienceDaily, 29 September 2016. <sciencedaily.com/releases/2....

Written by
dmf240 profile image
dmf240
To view profiles and participate in discussions please or .
Read more about...
2 Replies
parkie13 profile image
parkie13

That's why the idea of an infectious agent makes a perfect sense not only with Parkinson's but with almost all other diseases. You are told you have a disease but never an explanation never reason why.

whack-a-mole profile image
whack-a-mole

Yeah, that'd be great news except for the fact that, by the time they go through the various clinical trials and come out with an approved, working therapy, the disease will have already beat it to "the pass" and be well on its way down the other side.

Not what you're looking for?

You may also like...

Abatacept inhibits Th17 differentiation and mitigates α-synuclein-induced dopaminergic dysfunction in mice

Parkinson’s disease (PD) is characterized by the loss of nerve cells responsible for producing...
Emanuelfrb profile image

Parkinson's Disease: emerging treatment target, the NLRP inflammasome.

Hyperstimulated immune cells in the brain are emerging as a hallmark feature of most...
House2 profile image

Novel device opens new doors for Parkinson's disease diagnostics

Currently, there are no disease-modifying therapies for the treatment of Parkinson's disease;...
Farooqji profile image

Road to cell death more clearly identified for Parkinson's disease

In experiments performed in mice, Johns Hopkins researchers report they have identified the cascade...
Farooqji profile image

New link found between PD & Melanoma

one guess what it is (& no peaking below!) - α-synuclein, yes the very same neuronal protein...